Available online at www.ijrat.org

Intuitionistic Fuzzy γ Supra Open Mappings And Intuitionistic Fuzzy γ Supra Closed Mappings

R.Syed Ibrahim¹, S.Chandrasekar²

¹Assistant Professor, Department of Mathematics,
Sethu Institute of Technology,
Kariapatti, Virudhunagar(DT), Tamilnadu, India.

2 Assistant Professor, PG and Research Department of Mathematics,
Arignar Anna Government Arts College,
Namakkal(DT), Tamil Nadu, India
Email: syedjanna@gmail.com, chandrumat@gmail.com²

Abstract-Necla Turanl introduced the concept of Intuitionistic fuzzy supra topological space which is a special case of Intuitionistic fuzzy topological space. Aim of this paper is we introduced in IF γ supra open sets in Intuitionistic fuzzy supra topological space.and also we studied about Intuitionistic Fuzzy γ Supra Open Mappings And Intuitionistic Fuzzy γ Supra Closed Mappings in Intuitionistic fuzzy supra topological spaces

Index Terms-*IFγ* supra open set, *IFγ* supra closed set, *Intuitionistic fuzzy γ* supra Open Mappings, *Intuitionistic fuzzyi γ* supra Closed Mappings

1. INTRODUCTION

Topology is a classical subjects, as a generalization topological spaces many type of topological spaces introduced over the year. C.L. Chang [4] was introduced and developed fuzzy topological space by using L.A. Zadeh's[23] fuzzy sets. Coker[5] introduced the notion of Intuitionistic fuzzy topological spaces by using Atanassov's[2] Intuitionistic fuzzy sets

A.S. Mashhour [13] et al. Introduced and studied the supra topological spaces in the year 1983. M. E. AbdEl-Monsef et al. [1] introduced the fuzzy supra topological spaces and studied fuzzy supracontinuous functions and obtained some properties and characterizations. In 2003 Necla Turanl [21] introduced the concept of Intuitionistic fuzzy supratopological space

In 1996 D. Andrijevic[2] introduced b open sets in topological space,In this paper we introduced and studied about Intuitionistic Fuzzy γ Supra Open Mappings And Intuitionistic Fuzzy γ Supra Closed Mappings in Intuitionistic fuzzy supra topological spaces

2. PRELIMINARIES

Definition 2.1: [3]

An Intuitionistic fuzzy set (IF for short) A is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where the functions $\mu_A: X \rightarrow [0,1]$ and $\nu_A: X \rightarrow [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and

the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$.

Obviously, every fuzzy set A on a nonempty set X is an IFS of the following form

$$A = \{ \langle x, \mu_A(x), 1 - \mu_A(x) \rangle : x \in X \}.$$

Definition 2.2[3]

Let A and B be two IFSs of the form

A = { $\langle x, \mu_A(x), \nu_A(x) \rangle$: $x \in X$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle$: $x \in X$ }. Then,

(i) $A \subseteq B$ if and only if $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$,

(ii) A = B if and only if $A \subseteq B$ and $A \supseteq B$,

(iii) $A^{C} = \{\langle x, \nu_{A}(x), \mu_{A}(x) \rangle : x \in X \},$

 $(\mathrm{iv})\;\mathsf{A} \cup \mathsf{B} = \{\langle \mathsf{x},\, \mu_\mathsf{A}(\mathsf{x}) \; \forall \; \mu_\mathsf{B}(\mathsf{x}),\, \nu_\mathsf{A}(\mathsf{x}) \; \land \; \nu_\mathsf{B}(\mathsf{x})\rangle \! \colon \mathsf{x} \in \mathsf{X}\},$

(v) $A \cap B = \{\langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

(vi) []A = { $\langle x, \mu_A(x), 1 - \mu_A(x) \rangle$, $x \in X$ };

(vii) $\langle \rangle A = \{ \langle x, 1 - \nu_A(x), \nu_A(x) \rangle, x \in X \};$

The Intuitionistic fuzzy sets $0 \sim = \langle x, 0, 1 \rangle$ and $1 \sim = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X

Definition 2.3. [3]

Let $\{Ai: i \in J \}$ be an arbitrary family oIFS Intuitionistic fuzzy sets in X. Then

(i) $\cap A_i = \{\langle x, \land \mu_{Ai}(x), \lor \nu_{Ai}(x) \rangle : x \in X \};$

 $\text{(ii)} \ \cup A_i = \{\langle x, \lor \mu_{Ai}(x), \land \ \nu_{Ai} \ (x) \ \rangle : x \in X\}.$

Definition 2.4. [3]

Since our main purpose is to construct the tools for developing Intuitionistic fuzzy topological spaces, we must introduce the Intuitionistic fuzzy sets $0\sim$ and $1\sim$ in X as follows:

Available online at www.ijrat.org

$$0 \sim = \{ \langle x, 0, 1 \rangle : x \in X \} \text{ and } 1 \sim = \{ \langle x, 1, 0 \rangle : x \in X \}.$$
 Definition 2.5[3]

Let A,B,C be Intuitionistic fuzzy sets in X. Then

- (i) $A \subseteq B$ and $C \subseteq D \Rightarrow A \cup C \subseteq B \cup D$ and $A \cap C \subseteq$
- (ii) $A \subseteq B$ and $A \subseteq C \Rightarrow A \subseteq B \cap C$,
- (iii) $A \subseteq C$ and $B \subseteq C \Rightarrow A \cup B \subseteq C$,
- (iv) $A \subseteq B$ and $B \subseteq C \Rightarrow A \subseteq C$,
- $({\bf v})\overline{A\ \cup\ B\ }=\bar{A}\ \cap\ \bar{B}$
- (vi) $\overline{A \cap B} = \overline{A} \cup \overline{B}$,
- (vii) $A \subseteq B \Rightarrow \bar{B} \subseteq \bar{A}$,
- (viii) $\overline{(\bar{A})} = A$,
- (ix) $\bar{1} \sim 0 \sim$,
- (x) $\bar{0} \sim 1 \sim 1$

Definition 2.6[3]

Let f be a mapping from an ordinary set X into an ordinary set Y,

If B = { $\langle y, \mu_B(y), \nu_B(y) \rangle : y \in Y$ } is an IFST in Y, then the inverse image of B under

f is an IFST defined by $f^{-1}(B) = \{(x, f^{-1}(\mu_B)(x),$ $f^{-1}(v_B)(x) \rangle : x \in X$

The image of IFST A = { $\langle y, \mu_A(y), \nu_A(y) \rangle : y \in Y$ } under f is an IFST defined by

 $f(A) = \{ \langle y, f(\mu_A)(y), f(\nu_A)(y) \rangle : y \in Y \}.$

Definition 2.7[3]

Let A, Ai ($i \in J$) be Intuitionistic fuzzy sets in X, B, Bi $(i \in K)$ be Intuitionistic fuzzy sets in Y and f:X \rightarrow Y is a function. Then

- (i) $A_1 \subseteq A_2 \Rightarrow f(A_1) \subseteq f(A_2)$,
- (ii) $B_1 \subseteq B_2 \Rightarrow f^{-1}(B_1) \subseteq f^{-1}(B_2)$,
- (iii) $A \subseteq f^{-1}(f(A))$ { If f is injective, then $A = f^{-1}(f(A))$,
- (iv) $f(f^{-1}(B)) \subseteq B\{If f \text{ is surjective, then } f(f^{-1}(B)) = B\},\$
- (v) $f^{-1}(\cup B_i) = \cup f^{-1}(B_i)$
- (vi) $f^{-1}(\cap B_i) = \cap f^{-1}(B_i)$
- (vii) $f(\cup B_i) = \cup f(B_i)$
- (viii) $f(\cap B_i) \subseteq \cap f(B_i)$ { If f is injective, then $f(\cap B_i) = \cap f(B_i)$
- (ix) $f^{-1}(1\sim) = 1\sim$,
- (x) $f^{-1}(0\sim) = 0\sim$,
- (xi) $f(1\sim) = 1\sim$, if f is surjective
- (xii) $f(0\sim) = 0\sim$,
- (xiii) $\overline{f(A)} \subseteq f(\overline{A})$, if f is surjective,
- (xiv) $f^{-1}(\overline{B}) = \overline{f^{-1}(B)}$.

Definition 2.8[21]

A family τ_{ij} Intuitionistic fuzzy sets on X is called an Intuitionistic fuzzy supra topology(in short,IFST) on X if $0 \sim \in \tau_{\mu}, 1 \sim \in \tau_{\mu}$ and τ_{μ} is closed under arbitrary suprema.

Then we call the pair (X,τ_u) an Intuitionistic fuzzy supra topological space (in short,IFSTS).

Each member of τ_u is called an Intuitionistic fuzzy supra open set and the complement of an

Intuitionistic fuzzy supra open set is called an Intuitionistic fuzzy supra closed set.

Definition 2.9[21]

The Intuitionistic fuzzy supra closure of a set A is denoted by S-cl(A) and is defined as

S-cl (A) = \bigcap {B : B is Intuitionistic fuzzy supra closed and $A \subseteq B$.

The Intuitionistic fuzzy supra interior of a set A is denoted by S-int(A) and isdefined as

 $S-int(A) = \bigcup \{B : B \text{ is Intuitionistic fuzzy } \}$ supra open and $A \supseteq B$

Definition 2.10[21]

- (i). \neg (AqB) \Leftrightarrow A \subseteq B^C.
- (ii). A is an Intuitionistic fuzzy supra closed set in $X \Leftrightarrow S-cl(A) = A.$
- (iii). A is an Intuitionistic fuzzy supra open set in $X \Leftrightarrow S$ -int (A) = A.
- (iv). $S-cl(A^{C}) = (S-int(A))^{C}$. (v). $S-int(A^{C}) = (S-cl(A))^{C}$.
- (vi). $A \subseteq B \Rightarrow S\text{-int}(A) \subseteq S\text{-int}(B)$.
- (vii). $A \subseteq B \Rightarrow S\text{-cl}(A) \subseteq S\text{-cl}(B)$.
- (viii). $S-cl(A \cup B) = S-cl(A) \cup S-cl(B)$.
- (ix). S-int($A \cap B$) = S-int(A) $\cap S$ -int(B).

Definition 2.11

Let $(X, \tau \mu)$ is a Intuitionistic fuzzy supra topological space and $A \subseteq X$. Then A is said to be Intuitionistic fuzzy γ supra open(briefly IFγs -open) set

if $A \subseteq s\text{-cl}(s\text{-int}(A)) \cup s\text{-int}(s\text{-cl}(A))$.

The complement of Intuitionistic fuzzy γ supra open set is called Intuitionistic fuzzy y supra closed set (briefly IFys closed).

Definition 2.12

The Intuitionistic fuzzy γ supra closure of a set A is denoted by IF_γS-cl(A) and isdefined as

IF γ S -cl (A) = \cap {B : B is Intuitionistic fuzzy γ supra closed and $A \subseteq B$.

The Intuitionistic fuzzy γ supra interior of a set A is denoted by IFyS -int(A) and is defined as

IF γ S -int(A) = \cup {B : B is Intuitionistic fuzzy γ supra open and $A \supseteq B$

Definition 2.13[21]

Let $(X, \tau \mu)$ and $(Y, \sigma \mu)$ be two Intuitionistic fuzzy supra topological spaces and let $f: X \rightarrow Y$ be a function. Then f is said to be

- (i) Intuitionistic fuzzy supra continuous if the pre image of each Intuitionistic fuzzy supra open set of Y is an Intuitionistic fuzzy supra open set in X.
- (ii) Intuitionistic fuzzy supra closed if the image of each Intuitionistic fuzzy supra closed set in X is an Intuitionistic fuzzy supra closed set in Y.
- (iii) Intuitionistic fuzzy supra open if the image of each Intuitionistic fuzzy supra open set in X is an Intuitionistic fuzzy supra open set in Y.

3.INTUITIONISTIC FUZZY y SUPRA OPEN **MAPPINGS**

Available online at www.ijrat.org

Definition 3.1

A mapping $f:(X, \tau\mu) \to (Y, \sigma\mu)$ is Intuitionistic fuzzy γ supra open if the image of every Intuitionistic fuzzy supra open set of X is Intuitionistic fuzzy γ supra open set in Y.

Remark 3.2

Every Intuitionistic fuzzy supra open map is Intuitionistic fuzzy γ supra open but converse may not be true. For,

Example 3.3 Let $X = \{a, b\}$, $Y = \{x, y\}$ and the Intuitionistic fuzzy set U and V are defined as follows :A₁ = $\{x, < 0.7, 0.4 >, < 0.5, 0.6 >\}$,

 $A_2 = \{ x, < 0.5, 0.6 >, < 0.8, 0.7 > \}$

 $B_1 = \{ y, < 0.7, 0.6 >, < 0.5, 0.6 > \},$

 $B_2 = \{ y, <0.5, 0.6>, >, <0.8, 0.7> \},$

Then $\tau\mu$ = {0~, 1~, A₁, A₂, A₁UA₂} and $\sigma\mu$ = {0~, 1~, B₁, B₂, B₁UB₂} be Intuitionistic fuzzy supra topologies on X and Y respectively . Then the mapping $f:(X, \tau\mu) \to (Y, \sigma\mu)$ defined by f(a) = x and f(b) = y is Intuitionistic fuzzy γ supra open but it is not Intuitionistic fuzzy supra open.

Theorem 3.4

A mapping $f:(X, \tau\mu) \to (Y, \sigma\mu)$ is Intuitionistic fuzzy γ supra open if and only if for every Intuitionistic fuzzy set U of X f(S-int $(U)) \subseteq IF\gamma S$ -int(f(U)).

Proof:

Necessity Let f be an Intuitionistic fuzzy γ supra open mapping and U is an Intuitionistic fuzzy supra open set in X. Now S-int(U) \subseteq U which implies that f(S-int(U) \subseteq f(U). Since f is an Intuitionistic fuzzy γ supra open mapping,f(S-int(U) is Intuitionistic fuzzy γ supra open set in Y such that f(S-int(U) \subseteq f(U) therefore f(S-int(U) \subseteq IF γ S-int f(U).

Sufficiency: For the converse suppose that U is an Intuitionistic fuzzy supra open set of X. Then

f (U)=f(S-int(U) \subseteq IF γ S-intf(U). But IF γ S-int(f (U)) \subseteq f (U). Consequently f (U)=IF γ S-int(U) which implies that f(U) is an Intuitionistic fuzzy γ supra open set of Y and hence f is an Intuitionistic fuzzy γ supra open .

Theorem 3.5

If $f:(X, \tau\mu) \rightarrow (Y, \sigma\mu)$ is an Intuitionistic fuzzy γ supra open map then $S\text{-int}(f^1(G) \subseteq f^1(IF\gamma S\text{-int}(G))$ for every Intuitionistic fuzzy set G of Y.

Proof:

Let G is an Intuitionistic fuzzy set of Y. Then S-int $f^1(G)$ is an Intuitionistic fuzzy supra open set in X. Since f is Intuitionistic fuzzy γ supra open $f(S-int f^1(G))$ is Intuitionistic fuzzy γ supra open in Y and hence $f(S-intf^1(G)) \subseteq IF\gamma S-int(f(f^1(G)) \subseteq IF\gamma S-int(G)$. Thus $f^1(G) \subseteq f^1(IF\gamma S-int(G)$.

Theorem 3.6

A mapping $f:(X, \tau\mu) \to (Y, \sigma\mu)$ is Intuitionistic fuzzy γ supra open if and only if for each Intuitionistic fuzzy set S of Y and for each Intuitionistic fuzzy supra closed set U of X containing $f^{I}(S)$ there is a Intuitionistic fuzzy γ supra closed V of Y such that $S \subseteq V$ and $f^{I}(V) \subseteq U$.

Proof:

Necessity: Suppose that f is an Intuitionistic fuzzy supra γ open map. Let S be the Intuitionistic fuzzy supra closed set of Y and U is an Intuitionistic fuzzy supra closed set of X such that $f^1(S) \subseteq U$. Then $V = (f^1(U^C))^C$ is Intuitionistic fuzzy γ supra closed set of Y such that $f^1(V) \subseteq U$.

Sufficiency: For the converse suppose that F is an Intuitionistic fuzzy supra open set of X. Then $f^1((f(F))^C \subseteq F^C)$ and F^C is Intuitionistic fuzzy supra closed set in X. By hypothesis there is an Intuitionistic fuzzy γ supra closed set V of Y such that $(f(F))^C \subseteq V$ and $f^1(V) \subseteq F^C$. Therefore $F \subseteq (f^1(V))^C$. Hence $V^C \subseteq f(F) \subseteq f((f^1(V))^C) \subseteq V^C$ which implies $f(F) = V^C$. Since V^C is Intuitionistic fuzzy γ supra open set of Y. Hence f(F) is Intuitionistic fuzzy γ supra open in Y and thus f is Intuitionistic fuzzy γ supra open map.

Theorem 3.7

A mapping $f:(X, \tau\mu) \to (Y, \sigma\mu)$ is Intuitionistic fuzzy γ supra open if and only if $f^1(\gamma S\text{-}cl(B) \subseteq S\text{-}cl\ f^1(B)$ for every Intuitionistic fuzzy set B of Y.

Proof:

Necessity: Suppose that f is an Intuitionistic fuzzy supra γ open map. For any Intuitionistic fuzzy set B of Y $f^1(B) \subseteq S\text{-cl}(A)$ $f^1(B)$) Therefore by theorem 6.3 there exists an Intuitionistic fuzzy γ supra closed set F in Y such that $B \subseteq F$ and $f^1(F) \subseteq S\text{-cl}(A)$ $f^1(B)$). Therefore we obtain that $f^{-1}(\gamma S\text{-cl}(B)) \subseteq f^1(F) \subseteq S\text{-cl} f^1(B)$).

Sufficiency: For the converse suppose that B is an Intuitionistic fuzzy set of Y. and F is an Intuitionistic fuzzy supra closed set of X containing $f^1(B)$. Put V=S-cl(B), then we have B \subseteq V and V is Intuitionistic fuzzy γ supra closed and $f^1(V)\subseteq$ S-cl($f^1(B)$) \subseteq F. Then by theorem 3.6 f is Intuitionistic Intuitionistic fuzzy supra γ open .

Theorem 3.8

If $f:(X, \tau\mu) \to (Y, \sigma\mu)$ and $g:(Y, \sigma\mu) \to (Z, \rho\mu)$ be two Intuitionistic fuzzy map and gof: $(X, \tau\mu) \to (Z, \rho\mu)$ is Intuitionistic fuzzy supra γ open. If $g:(Y, \sigma\mu) \to (Z, \rho\mu)$ is Intuitionistic fuzzy γ supra irresolute then $f:(X, \tau\mu) \to (Y, \sigma\mu)$ is Intuitionistic fuzzy γ supra open map.

Proof:

Let H be an Intuitionistic fuzzy supra open set of Intuitionistic fuzzy supra topological space $(X, \tau\mu)$. Then (gof)(H) is Intuitionistic fuzzy γ supra open set of Z because gof is Intuitionistic fuzzy supra γ open map. Now since $g:(Y, \sigma\mu) \rightarrow (Z, \rho\mu)$ is Intuitionistic fuzzy γ supra irresolute and (gof)(H) is Intuitionistic fuzzy γ supra open set of Z therefore $g^{-1}(gof(H)) = f(H)$ is Intuitionistic fuzzy γ supra open set in Intuitionistic fuzzy supra topological space Y.Hence f is Intuitionistic fuzzy γ supra open map.

4. INTUITIONISTIC FUZZY γ SUPRA CLOSED MAPPINGS Definition 4.1

Available online at www.ijrat.org

A mapping $f:(X,\tau\mu)\to (Y,\sigma\mu)$ is Intuitionistic fuzzy γ supra closed if image of every Intuitionistic fuzzy supra closed set of X is Intuitionistic fuzzy γ supra closed set in Y.

Remark 4.2

Every Intuitionistic fuzzy supra closed map is Intuitionistic fuzzy γ supra closed but converse may not be true. For,

Example 4.3

Let $X = \{a, b\}$, $Y = \{x, y\}$ Then the mapping $f : (X, \tau \mu) \rightarrow (Y, \sigma \mu)$ defined in Example 3.3 is Intuitionistic fuzzy γ supra closed but it is not Intuitionistic fuzzy supra closed.

Theorem 4.4

A mapping $f:(X, \tau\mu) \to (Y, \sigma\mu)$ is Intuitionistic fuzzy γ supra closed if and only if for each Intuitionistic fuzzy set S of Y and for each Intuitionistic fuzzy supra open set U of X containing $f^1(S)$ there is a Intuitionistic fuzzy γ supra open set V of Y such that $S \subseteq V$ and $f^1(V) \subseteq U$.

Proof:

Necessity: Suppose that f is an Intuitionistic fuzzy γ supra closed map. Let S be the Intuitionistic fuzzy supra closed setof Y and U is an Intuitionistic fuzzy supra open set of X such that $f^1(S) \subseteq U$. Then $V = Y - f^1(U^C)$ is Intuitionistic fuzzy supra γ open set of Y such that $f^1(V) \subseteq U$.

Sufficiency: For the converse suppose that F is an Intuitionistic fuzzy supra closed set of X. Then $(f(F))^C$ is an Intuitionistic fuzzy set of Y and F^C is Intuitionistic fuzzy supra open set in X such that $f^1((f(F))^C) \subseteq F^C$. By hypothesis there is an Intuitionistic fuzzy γ supra open set V of Y such that $(f(F))^C \subseteq V$ and $f^1(V) \subseteq F^C$. Therefore $F \subseteq (f^1(V))^C$. Hence $V^C \subseteq f(F) \subseteq f((f^1(V))^C) \subseteq V^C$ which implies $f(F) = V^C$. Since V^C is Intuitionistic fuzzy γ supra closed set of Y. Hence f(F) is Intuitionistic fuzzy γ supra closed in Y and thus f is Intuitionistic fuzzy γ supra closed map.

Theorem 4.5

If $f:(X, \tau\mu) \to (Y, \sigma\mu)$ is Intuitionistic fuzzy supra closed and $g:(Y, \sigma\mu) \to (Z, \rho\mu)$ is Intuitionistic fuzzy γ supra closed set. Then gof $:(X, \tau\mu) \to (Z, \rho\mu)$ is Intuitionistic fuzzy γ supra closed set.

Proof:

Let H be an Intuitionistic fuzzy supra closed set of Intuitionistic fuzzy supra topological space $(X,\tau\mu$). Then f (H) is Intuitionistic fuzzy supra closed set of (Y, $\sigma\mu$) because f is Intuitionistic fuzzy S-closed map. Now(gof) (H) =g(f(H)) is Intuitionistic fuzzy γ supra closed set in Intuitionistic fuzzy supra topological space Z because g is Intuitionistic fuzzy γ supra closed map. Thus gof : $(X,\tau\mu$) \rightarrow (Z, $\rho\mu$) is Intuitionistic fuzzy γ supra closed set.

REFERENCES

- [1].M. E. Abd El-Monsef and A. E. Ramadan, On fuzzy supra topological spaces, Indian J. Pure and Appl. Math. no.4, 18(1987),322-329.
- [2].D. Andrijevic, b open sets, Math. Vesnik, 48(1) (1996), 59-64.
- [3]. Atnassova K., "Intuitionistic Fuzzy Sets", Fuzzy Sets and Systems, 20, 87-96,(1986).
- [4]. Chang C.L. "Fuzzy Topological Spaces", J. Math. Anal. Appl. 24 182-190,(1968).
- [5] Coker, D. An introduction to Intuitionistic fuzzy topological spaces, Fuzzy Sets And Systems 88, 81-89, 1997.
- [6]. P.Deepika, S.Chandrasekar "Fine GS Closed Set and Fine SG Closed Sets in Fine topological Space", International Journal of Mathematics Trends and Technology (IJMTT).,V56(1):8-14 April 2018
- [7].P.Deepika, S.Chandrasekar , F-gs Open , F-gs Closed and F-gs Continuous Mappings in Fine Topological Spaces, International Journal of Engineering, Science and Mathematics, Vol.7 (4),April 2018, 351-359
- [8].P.Deepika, S.Chandrasekar, M. Sathyabama, Properties Of Fine Generalized Semi Closed Sets In Fine Topological Spaces, Journal Of Computer And Mathematical Sciences Vol 9 No.4 April (2018) 293-301
- [9].A.S. Mashhour, A.A.Allam, F.S. Mahmoud and F.H.Khedr, "On supra topological spaces" Indian J. Pure and Appl. vol. 4,14(1983),502-510.
- [10]. M. Parimala, C.Indirani, "Intuitionistic fuzzy β-supra open sets and Intuitionistic fuzzy β-supra continuous mapping", Notes on Intuitionistic fuzzy sets, 20(2014), 6-12.
- [11].M. Parimala, Jafari Saeid, Intuitionistic fuzzy α -supra continuous maps,"Annals of fuzzy mathematics and informatics", vol.9, 5(2015), 745-751.
- [12].M. Parimala, C. Indirani, On Intuitionistic Fuzzy Semi Supra Open Set and Intuitionistic Fuzzy Semi Supra Continuous Functions Procedia Computer Science, 47, (2015),319-325.
- [13]. A.S. Mashhour, A.A.Allam, F.S. Mahmoud and F.H.Khedr, "On supra topological spaces", Indian J. Pure and Appl. vol.4,14(1983), 502-510.
- [14].Selvaraj Ganesan,SakkariVeeranan Chandrasekar Another quasi µS-open and quasi µS-closed Functions,Journal of New Theory15,(2017),75-80.
- [15]. K.SafinaBegum, S.Chandarasekar, Totally Fine Sg Continuous Functions And Slightly Fine Sg Continuous Functions In Fine Topological Spaces, International Journals Engineering ,Science & Mathematics (IJESM), Vol 7 No4 April (2018),119-126.
- [16].K.SafinaBegum,,S.Chandarasekar, quasi fine sg open and quasi fine sg-closed functions in fine topological spaces ,Journal Of Computer And

Available online at www.ijrat.org

- Mathematical Sciences, Vol 9 No., April (2018), 245-253.
- [17] .S. Jeyashri,S.Chandrasekar,and M.Sathyabama, Soft b#-open Sets and Soft b#- continuous Functions in Soft Topological Spaces, International Journal of Mathematics and its Applications,6(1-D)(2018), 651-658.
- [18].R.Selvaraj,S.Chandrasekar, Contra Supra*g continuous Functions And Contra Supra*g-Irresolute Functions In Supra Topological Spaces.ernational Journal of Engineering Science and Mathematics Vol. 7 I(4),April 2018, 127-133.
- [19] .K.SafinaBegum,S.Chandarasekar,Contra Fine Sg-Continuous Maps In Fine Topological Space, Journal of Global Research inMathematical Archives ,Vol.5,issue 4, 37-43,Apr-2018.
- [20].R.Selvaraj, S.Chandrasekar ,Supra*g-Closed Sets in Supra Topological Spaces,International Journal of Mathematic Trends and Technology (IJMTT) ,V56(1),15-20Apr- 2018.
- [21].N.Turnal, "On Intuitionistic Fuzzy Supra Topological spaces", International Conference on Modeling and Simulation, Spain, vol.2, (1999) 69-77.
- [22]. N. Turnal, "An over view of intuitionstic fuzzy Supra topological spaces". Hacettepe Journal of Mathematics and Statistics, vol.32 (2003), 17-26.
- [23].Zadeh, L. A. "Fuzzy sets", Information and Control, 8(1965), 338-353.